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Areas of calorimeters R&D in 2016.
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Continue technology development for W powder ScFi emcal. Push of technology for

high resolution calorimetry (BEMC). sSPHENIX R&D on mass production and 2D
projectivity.

Evaluation of SiPMs and APDs as a readout sensors. Radiation hardness (FEMC).
Development of crystal calorimetry for EIC (BEMC).

Collaboration with BNL EIC taskforce. Optimization of calorimeters designs and
quantitative estimate of EIC radiation environment (BEMC,CEMC,FEMC).



High Resolution Sampling BEMC, 2016 R&D.

‘is W/ScFi technology still feasible towards

high-resolution calorimeters with future
development?’ (After 2015 Test Run)

Potential problems with the first ‘O’ HR prototype in 2015:
* homogeneity of the composite absorber

* consistency of the sampling frequency with thin fibers

* damage at the end of the fibers due to machining

* efficiency of light collection with compact readout.

In 2016 we proposed to build an additional 'S’
prototype which did not have complications with the
homogeneity of absorber and consistency of sampling
frequency. This prototype consisted of thicker, square
fibers and an absorber of 100% W-powder.

Fibers Absorber | Sampling | Composition | Number of
Detector SCSF 78 Frequency | by weight fibers in
superblock
“0l1d” 0.671 mm | W-0.665
High sampling Round, |75% W Staggered | Sn-0.222 25112
frequency 0.4mm 25% Sn Pattern Sc-0.057 Damaged 3
Epoxy- 0.056
“Square” 0.904mm | W-0.858
High sampling Square, | 100% W | Square Sc- 0.075 11664
fraction 0.59 x Pattern Epoxy- 0.067 | Damaged 0
0.59 mm?
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~ Single production block,
~5cmxbcmx 25 cm

2016 R&D.

Why to try square scintillation fibers?
No ScFi calorimeters in the past were built with square fibers.

Pros:

better light yield (according to Kuraray ~ 30% better
trapping efficiency compared fo round fibers, which is
particularly interesting for compact light collection
scheme)

internal structure of the detector can be made more
homogeneous

easier to preserve sampling fraction and frequency within
and between superblocks (glued from four production
blocks).

larger surface area for a given volume

cons:

Joint between
two production

more expensive
more difficult to feed through the set of screens

Joint between
two doublets

blocks (‘Crack’)




Test Run 2016 FNAL, May 4-11:

Questions we want to understand:
. Is production homogentity of the block sufficient? (SF kept within +-0.2% (weight) from
block to block during production)

Is local density/composition variations are under control? (W/Sn composite absorber
during packing)

Is light yield is sufficient fo think about compact readout with Si sensors in future?
What is the effect of 'dead’ area between superblocks.

What are benefits of using square fibers?

Results presented for the worst case scenario.

AN X «  Impact hits selected with sc. Hodoscope
} & centered between four blocks.

«  Impact angle 10 degrees (minimal angle for

EIC configuration).

*  Energy scans taken with orientation of
‘wide’ central gap being vertical as shown
and horizontal, i.e. for cases when narrow
core of EM showers sample or integrate
dead area.

« 'S and 'O’ tested one by one using the same
calibrated PMT




Counts

Counts

Test Run 2016 FNAL, May 4-11:
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Test Run 2016 FNAL, May 4-11:

ECal Resolution
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" has about 20% better resolution at 1 GeV
" constant term 1.7% compare to 2.9% for 'O’

'S’ Light Yield ~ 5000 p.e./GeV, 'O’ LY - 3500 p.e./GeV

Beam Energy (GeV)

Mult - one hit in Sc. Hodoscope, Ce - electrons ID using Cherenkov, PbGl - veto on hits in the PbGl
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Deviation in %, Projective Crack

Uniformity Studies:

* Data sample 4 GeV electrons, 1k e- evt.
in pixel 5Smm x 5mm

* 'Cracks’ clearly seen for hits within +-
2.5 mm to the crack

* Projective dead areas (horizontal
orientation of the ‘crack’) increases
constant term by ~ 50%.

* Projective dead areas increases dip
near the ‘crack’ by ~ 100%.

Entries 64

Q_ L
- — 1.7 1.0 12 14 16 27 33 3.4
A -
v 15—
c -
g -
O — -1.0 0.5 1.0 11 13 24 3.2 3.1
O -
g 10—
& -
- I -2.8 -1.1 -0.5 -0.5 -0.3 0.6 0.9 1.1
c -
O 5—
—1 -
8 | 7.7 -5.1 -4.7 -5.2 -5.2 -5.1 -4.9 -4.3
o -
Uy
: -1.4 -1.1 -0.9 -1.9 -1.3 -1.0 0.0 0.5
-5_—
— -1.9 0.1 0.4 -0.3 0.1 1.0 1.7 2.2
-10_
— 0.6 1.0 13 0.1 0.6 1.8 28 3.1
-15_
L 0.6 1.0 0.9 0.0 11 20 3.2 38
4_—111IllIlIllllIlllIIIlIllllllIlIlllllIl
-15 -10 -5 0 5 10 15
Position in mm East -> West
12— m C
10— Entries 64 ] Entries 42 :_

Counts

S
T 1 [ T 1 | T 1 | T 1

Mean___1.083¢.08

[ UL

il

lllllllll

Mean -7.184e-09

RMS 1.403

I—‘Illllllllll

|
%0

llHII'
-8 -6

-2 0 2

4 6 8

Percentage deviation from mean

Projective Dead Area

10

1
o

M

With cross cut

Entries 42

|IIII|I][I|IIII|IIIIIIII I
uy)
w
»
N

TTTT

IlIllIIIII

Mean -3.548e-10

RMS 1.131

Lol oo bl

Illlllllllll

8 6 -4 -2
Non

2 4 6 8 10

Pefsentage deviation from mean

rojective Dead Area



NMocouviuLivll

Test Run 2016 FNAL, May 4-11:

ECal Resolution
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Excluding hits within +-2.5 mm within crack. Non-projective dead area.

* 1% constant term at 10 degrees.
« 2.9% constant term at 4 degrees.
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« A similar analysis was made for the 'O’ prototype. With the same ‘Geom’ cut used for 'S’
detector, the constant term is about 2.6% at 10 degrees. The only explanation for this is that
the combination of composite absorber and thin fibers does prevented us from keeping the
sampling fraction within production blocks sufficiently uniform.



Test Run 2016 FNAL, May 4-11, Summary:

Is production homogentity of the blocks sufficient? (SF kept within +-0.2% from block to
block during production) Yes, for Square Fiber EM Protfotype.

Is local density/composition variations are under control? (W/Sn composite absorber
during packing) Probably Not, for composite absorber.

Is light yield is sufficient to think about compact readout with Si sensors in future? Yes,
5000 p.e./GeV. But, this is disappointing result for development of compact light collection
schemes. Seemingly, there is no 30% increase in LY compare to round fibers, after
accounting for SF. Preliminary due to ongoing MC.

What is the effect of ‘dead’ area between superblocks. Increased constant term, need to
reduce ‘vertical crack in future.

What are benefits of using square fibers? May be none.

Overall: Very promising results, already better than excellent Hl EMcal.

For BEMC most promising future developments is with ‘high sampling fraction’ version. For
that we'll need to finish studies of Si sensors in ‘realistic’ conditions and investigate new
compact light collection schemes.

10



SPHENIX, T€S'|' Run 2016 FNAL Electron Resolution
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SiPMs and APDs in realistic’ conditions:

(S:‘\__\ ;/-TERMllNAL CLUS’I’ER (DETAIIL)
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* You cant catch this in the test runs. Need collider environments. e e w0 e W
« CMS and PANDA didnt know about this until LHC started and trigger system
got choked! 50 keV, PKA
« SiPMs in principle should be immune to Nuclear Counting Effects, but what about * Large signal in APD,
non-isolated spikes? * One pixel fired in SiPM

Test at STAR IP during Runlé:

SiPMs
* FEMC equipped with dual readout to compare
Light Pipe FEMC response of SiPMs (APDs) to PMT.

 High Tower (HT) Trigger for four central
towers (range 4 - 2 GeV).

* Installed at the East Side of the STAR
Detector about 1 meter away from the beam

pipe.
* SiPM HT. data set ftaken during AuAu run.

* APDs HT. data set taken during dAu run. Gap
in data taking is due fo test run at FNAL.




SiPMs and APDs in realistic’ conditions:
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FEMC, SiPMs (APDs) in realistic’ conditions (all results are Preliminary)
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FEMC, SiPMs in realistic’ conditions (Preliminary):

ECal, Ratio Sum SiPM to PMT
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* Fraction of signals outside 5 sigma is about 4 *10 -4
for SiPM readout.

* Origin of these signals is not clear.

Test with 2X, converter in front of SiPMs
(sensitivity to ‘shower’ particles)

« Excess of ~ 90 pixels/GeV may be due to the
same things which produces non isolated spikes
in CMS ?

* If true (not the artifact of light collection to
PMT) this may be a problem when summing
many SiPMs (especially if detector has low LY).

* Example, FEMC HAD readout, Sum 8 SiPMs. 130
pixels/GeV, Test Run 2014 at FNAL.
Q0% ®

b b O 22O

IBGBl — \Vill this be better with two APDs ?



SiPMs and APDs 2016 tests. Preliminary Summary:

SiPMs insensitive o NCE.

SiPMs may be sensitive to ‘showers’ (non-isolated spikes at CMS).

Depending on environment, LY from the detector, speed of light collection one sensors
may be better than the other (so far, seems, that all EM calorimeter will be better with
SiPM, HAD may be better with APD).

This may have impact on readout (timing requirement?)

We may also need to reconsider absorber for HAD (move from Pb to Fe).

Efficiency for light collection for all calorimeters need to be improved. Optimism about
dramatic improvement of PDE for SiPMs is fading away. Usage of filters should be
reconsidered. Compensation from back side with mirrors creates problems and not always
possible.

Simple way of adding more sensors to increase efficiency of light collection may create
problems.

Aiming at sensors with smaller pixels (smaller PDE, larger number of pixels) may be a
problem as well.

We'll need to continue these studies (more systematically) next year during 500 GeV pp
Run 17 at RHIC.

This will be the best chance to study how sensors behave in conditions close to what will
be at EIC. The next such opportunity (pp Run) will be only past 2021.

Results may impact choice of design of many components of calorimeter system.
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Priorities for R&D, sampling calorimeters FY17:

* Systematic study of behavior of Si sensors in realistic conditions.

. Lok . Modify FEMC (light guide for PMT, two
i EEME sets of SiPM readouts, one being blind to
30 cm \ l . . . .
Beam Pipe scintillation I|gh1‘)
I $ Modify 'O’ or 'S’ similar to FEMC, keep

SiPMs downstrem.

Al
.8 upport
Structlure.

Weight of selup is aboul 200 kg.

« Optimization of compact light collection for FEMC. (Goal to have final version).

* SPHENIX: analysis of test run data, development for 2D projective blocks and

‘industrialization” for 1D blocks, SiPM rad damage studies <- all covered from
SPHENIX funds.

Future planning (72018/2019). Sampling calorimeters

e Build full scale FEMC (256 ch EM + 16 ch. HAD)

* Use it as a permanently running test stand to optimize FEEs, digitizers, DAQ, trigger,
monitoring, slow control systems.

* Operate all these systems during RHIC running.

17



Backup Slides.



W/ScFi related R&D budget request FY17.

SENSL SiPMs $5k
Sensor Boards 3 iterations $5k
Fibers KURARAY 3 sets $12k
Meshes 3 sets $3.4k
Tungsten Powder $3k
Hamamatsu MPPC 25 um $3.25k
Hamamatsu H6559 (spare PMT) $1.2k
Hamamatsu C10439 and parts for | $2.7k
monitoring system

CMC080 ADC (spare) $4k
FEEs BNL Test 16x3 + spares $6k
UCLA Machine and Electronics Shop | $16.1k
(26% overhead included)

UCLA support for students (26% | $15.6k
overhead included)

Travel (26% overhead included) $25k
Shipping $5k
Mechanical structures for BNL tests $6k
Supplies $5k
Support for electronics engineer | $26k
(IUCF)

(33% overhead included)

Total Direct $126.10
Total $144.25
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